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Abstract: Localization-based super resolution microscopy holds superior 
performances in live cell imaging, but its widespread use is thus far mainly 
hindered by the slow image analysis speed. Here we show a powerful image 
analysis method based on the combination of the maximum likelihood 
algorithm and a Graphics Processing Unit (GPU). Results indicate that our 
method is fast enough for real-time processing of experimental images even 
from fast EMCCD cameras working at full frame rate without 
compromising localization precision or field of view. This newly developed 
method is also capable of revealing movements from the images 
immediately after data acquisition, which is of great benefit to live cell 
imaging. 

©2010 Optical Society of America 

OCIS codes: (180.2520) Fluorescence microscopy; (100.6640) Superresolution. 
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1. Introduction 

Fluorescence microscopy offers a sensitive, noninvasive approach to probe cells. With the 
advent of fluorescence labeling technologies and advanced fluorescence imaging techniques, 
it is now possible to gain deep insights into dynamic processes in living cells with high spatial 
and temporal resolution [1,2]. In particular, innovative super resolution imaging techniques, 
which are mainly derived from fluorescence microscopy, have revolutionized biological 
imaging by providing the capability to visualize the distribution, transport, and interactions of 
individual molecules in living cells with unprecedented spatial resolution. Among the 
innovations, photoactivated localization microscopy (PALM) and stochastic optical 
reconstruction microscopy (STORM) rely on the detection and localization of single 
fluorescent probes to reconstruct images the resolution of which is not limited by far-field 
diffraction but by photon-counting statistics [3,4]. In live cell imaging, one has to make a 
trade-off among the sensitivity of detection, the imaging speed and the viability of the 
specimen [2]. Intrinsically wide-field imaging approaches such as PALM and STORM hold 
great potential for live cell imaging, since they offer simultaneously ultra-sensitive detection, 
maintain cell viability for extended time periods and image a large field of view at once. 

Imaging speed becomes a key issue when multiple dynamic cellular processes are to be 
monitored. Localization-based super resolution microscopy is relatively slow [3,4]. For 
example, in live cell PALM, ~30 s are necessary at present to acquire images at a resolution of 
~60 nm [5]. However, a complete image analysis, including localizing multiple molecule 
positions in each image frame and reconstructing the final image from a large number of 
image frames usually takes even longer than image acquisition [6]. As a result, images can 
only be visualized long after data acquisition, which is highly undesirable in tracking dynamic 
processes in living cells. 

Recently, Nienhaus and associates introduced a fast image analysis method that relies on 
an algebraic algorithm called fluoroBancroft [7,8], where parallel data acquisition and 
analysis is possible for up to 100 molecules per frame with a camera frame time of 100 ms at 
only a small resolution loss. Further optimization of imaging acquisition speed is desirable 
because brighter probes and faster cameras [9,10] will become available in the future. These 
developments will lead to substantially larger numbers of molecules that need to be analyzed 
in parallel. Ultimately, live cell imaging will benefit most from real-time image analysis of a 
much larger number of fluorescent molecules without compromising either localization 
precision or field of view. Moreover, revealing dynamic information for large-scale live cell 
imaging will be possible immediately after image acquisition. Obviously, this goal is still 
beyond reach. 

To meet the increasing need for fast image analysis in localization-based super resolution 
microscopy, we have developed a new method, termed MaLiang (after a traditional Chinese 
folktale “Ma Liang and his Magic Brush”) for “maximum likelihood algorithm encoded on a 
Graphics Processing Unit (GPU)”. This GPU-based maximum likelihood method exploits the 
fact that a GPU can compute locations of molecules in parallel [11,12], while the maximum 
likelihood algorithm guarantees a high localization precision [13]. Compared with the fastest 
algebraic fluorosBancroft (FB) method reported recently, our method has an ~8-fold speed 
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gain in the full routine for analyzing experimental image frames. Simulation results indicate 
that this new method can analyze ~20,000 molecules per second and, thus, is capable of 
processing experimental images from fast EMCCD cameras in real-time. The capability of 
this method for discovering fast cellular process in living cell imaging is also discussed. 

2. Methods 

2.1. Description of the maximum likelihood algorithm 

A variety of methods are applied in localizing single fluorescent molecules. Similar to 
Gaussian fitting (GF), the maximum likelihood algorithm is a high precision localization 
method, as described earlier [14]. This algorithm was combined with a generalized projection 
gradient method to locate single fluorescent molecule efficiently. Note that the point spread 
function is generally used to model the emission intensity pattern from individual fluorescent 
molecule. Theoretically, the intensity in pixel (i, j) is described by 
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where (x0,y0) is the position of fluorescent molecule, and A and b denote the peak values of 
signal and background noise intensities, respectively. The observed signal, corresponding to 
Eq. (1) in pixel (i, j), is expressed by the symbol qi,j. We can compute the probability of Ii,j = 
qi,j by the following equation 
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From Eq. (2), the spatial distribution of the light intensity is well described by a joint 
probability 
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The logarithm of Eq. (3) can be maximized by adjusting the parameters in Eq. (1). Note that 
the parameters should all be above zero. Based on the information described above, we can 
compute the position (x0, y0) of the fluorescent molecule by solving the following optimization 
problem 
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The generalized projection gradient method [15,16] can be used to obtain the optimal values. 

2.2. Description of the MaLiang method 

The total process for localizing the positions of multiple molecules and reconstructing a final 
super resolution image is embedded in a combined computational framework of CPU and 
GPU. As shown in Fig. 1, three steps are carried out successively for the entire image analysis 
routine. 
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Fig. 1. The entire PALM image analysis routine. 

2.2.1. Step 1. De-noising 

Original images were loaded into the memory of the CPU and then delivered to the GPU 
hardware. An optimized convolution template for de-noising in the GPU was modified with 
the following facts: an image filter separated into horizontal (row) and vertical (column) 
passes is optimal for boosting computing efficiency of the GPU [17], and an annular 
averaging filter efficiently eliminate the influence of different background intensity of 
fluorescent molecules in an image [7]. Therefore, in the convolution template for de-noising, 
the forms of the averaging and annular averaging filters were modified to have the same sum 
of two separate filters. The raw image was then convoluted with the two filters respectively, 
resulting in two corresponding images which were further summed up to give the final de-
noising image. Note that the dimension of the averaging filter should be adjusted to match the 
diameter of the corresponding Airy disk ad should be smaller (2 pixels) than that of the 
annular filter. 

2.2.2. Step 2. Sub-region extraction 

This step is used to extract sub-regions for further position localization. Due to a sparse 
distribution of fluorescent molecules in an image, extracting sub-regions can be performed 
efficiently on the CPU. For a noise-reduced image, the positions of the pixels where the 
values are local maxima above a given threshold value were extracted and stored. The 
threshold value is estimated to be more than 5 the standard deviation of the background noise 
intensity in the noise-reduced image. A sub-region with 5 x 5 pixels was extracted for the FB 
method, and a region with 7 x 7 pixels for the MaLiang and GF methods. The different sizes 
used here were based on the following considerations. For the FB method, it is necessary to 
separate the signal and noise. A larger sub-region makes such a separation more difficult, thus 
reducing the localization precision of the molecules. On the other side, MaLiang and GF 
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methods are based on iterative optimization algorithms, therefore it is important to keep the 
data set that entirely includes the PSF of a single molecule. 

2.2.3. Step 3. Localization 

Values in each extracted sub-region are sent to the GPU and assigned a thread for further 
parallel computation. In the thread, the maximum likelihood algorithm was adopted to obtain 
precise sub-pixel localization of the fluorescent molecule. The number of extracted sub-
regions that can be analyzed simultaneously in the GPU is governed by the number of threads, 
which is determined by the capacity of the GPU graphics card used. Using an NVIDIA 
GeForce 9800GT graphics card with 1.0 GB memory, 3,000 fluorescent molecules could be 
simultaneously analyzed and located. 

2.3. Experimental and simulated data for image analysis 

For a fair comparison between the fluoroBancroft method [7] and our newly developed GPU-
based maximum likelihood algorithm, we used the same PALM image frames as those 
analyzed by the former method. As Gaussian fitting is more widely used by researchers in this 
field, we also include a comparison with this method. To verify our results from real PALM 
image data and to explore the limitations of our method in regard to the spatial and temporal 
resolution of localization, simulation studies based on the concept described by Ober et al [14] 
were also carried out. Parameters were modified to match the experimental images, where the 
radius of Airy disks equals 260 nm in object space. We note that spots with radii exceeding 
the average radius of the Airy discs by more than 3.5 × the standard deviation were regarded 
as overlapping spots and thus rejected. 

In the simulations, the pixel size was set to 130 nm, so that the Airy disk occupies 16 
pixels. In this case, when the photons and the background noise are ascertained, the 
localization precision could be optimized according to the theoretical analysis and the 
simulation by R. E. Thompson et al. [18] .The background noise was mostly considered as 
Poissonian noise and the SNR is defined as the ratio of I0 to the standard deviation of I0 + Ib. 
Here, I0 is the peak signal above the background noise and Ib is the intensity of background 
noise and was set to 10. 

2.4. Hardware platform for image analysis 

All programs were written in C under the Microsoft Visual Studio 2005 environment, using an 
Intel i5-750, 2.67 GHz personal computer with 4.0 GB memory. A fairly cheap (~$150 as of 
January 2010) NVIDIA GeForce 9800GT graphics card with 1.0 GB memory was used for 
GPU-based localization computation. Note that the execution times depend on the hardware 
platform. 

2.5. Method for eliminating bad data points 

In Figs. 5c and 5f, a simple linear regression method was applied to reject data points that 
markedly deviated from the mean contour line. Only points are included that deviate not more 
than four times the standard deviation from the mean contour line. The final images are built 
up by repeating this process several times. Note that only one linear structure exists in each of 
the final images. 

3. Results and Discussions 

3.1. Localization accuracy 

Comparisons of the localization accuracy among Gaussian fitting (GF), fluoroBancroft (FB), 
and MaLiang (MLG) methods are presented in Fig. 2. The resolution differences among these 
methods (Figs. 2b-2d) are not easily visualized, indicating that further analysis is required. 
Based on an approach suggested by Nienhaus et al [7], where the half width of the distribution 
of fluorescent molecules around their mean contour line was used for quantitative 
comparisons, it is found that the localization precision of the MaLiang method is comparable 
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to the GF method and significantly higher than the FB method (Fig. 2f). This finding is 
supported by simulation (Figs. 2g-2h). Apparently, the higher localization precision of 
MaLiang over FB comes from the intrinsic performance difference between fitting and 
algebraic algorithms. The results also indicate that the Poisson noise model used in the 
MaLiang method is suitable to describe the noise behavior of the real image frames. 

 

Fig. 2. Localization performance of Gaussian fitting (GF), fluoroBancroft (FB), and MaLiang 
(MLG) methods for real image frames (a-f) and simulations (g-h). Overlay of the first 1000 
original image frames is shown in (a). Super resolution images were reconstructed by GF (b), 
FB (c) and MLG (d) method, respectively. (e) Normalized distributions of fluorescent 
molecules deviating from their mean contour lines for the first 1000 image frames (data set 1). 
(f) The full width at half maximum (FWHM) of the distribution for all image frames (data sets 
1-8). The frames were grouped into 8 consecutive data sets with 1000 frames each. The mean 
absolute error (g) and standard deviation (h) as a function of signal-to-noise (SNR) are also 
presented. 

3.2. Computational speed of image analysis 

Generally, the computation duty increases with the image acquisition rate and the molecules 
needed to be localized per frame. The computation duty between typical and fast EMCCD is 
presented in Table 1. Obviously, the fastest algebraic fluorosBancroft (FB) method reported 
recently is not capable of real-time processing experimental images from fast EMCCD 
working at full frame rate. 

We evaluated the image analysis speed of the MaLiang method by performing an entire 
PALM image analysis routine with first 1000 experimental image frames (Table 2). The total 
execution time with the MaLiang method is found to be 1.50 s, an 8-fold speed gain over the 
FB method (11.83 s) and a 22-fold gain over the GF method (34.02 s). We found that the 
program written in C runs about 2.5-fold faster than that in Matlab. 

Table 1. Comparison of the maximum number of molecules that need to be localized in 
PALM imaging with different detectors. 

Camera type a Pixel array size Full frame rate (fps 
b) 

Density of localized molecules c 

Per frame Per second 

Typical EMCCD 512 x 512 ~30 ~1600 (160) ~48000 (4800) 

Fast EMCCD 128 x 128 ~500 ~225 (22) ~112 500 (11000) 

a Specifications are adapted from the Andor iXon DU897 as a typical EMCCD camera and the Andor iXon DU860 as 
a fast EMCCD camera [19]. b Abbreviation for frames per second. c Theoretical number of molecules that need to be 
localized. The calculation was based on the analysis by Hess et al., who assumed that a good density of localized 

molecules per frame is ~1 µm−2 considering a trade-off between imaging speed and localization efficiency [6]. The 
number in parenthesis is estimated for heterogeneous biological structures in live cell imaging experiments, assuming 
that 10% of the image contains the majority of molecules [20]. 
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Table 2. Time consumption in different image analysis steps for experimental and 
simulated image data. a 

Method De-noising Sub-region extraction Localization Total 

Exp.(s) Sim.(ms) Exp.(s) Sim.(ms) Exp.(s) Sim.(ms) Exp.(s) Sim.(ms) 

MLG 0.18 0.74 0.91 2.08 0.39 0.80 1.50 3.62 

FB 8.99 35.88 0.63 1.62 2.21 3.81 11.83 41.31 

GF 8.97 35.73 0.98 2.08 24.07 43.23 34.02 81.04 
a For the simulations, the time consumption was determined from the average time required for localization in a 
simulated image frame with 512 x 512 pixels and 100 molecules, based on 30 simulated images. To estimate the 
analysis time for the experimental data, the first 1,000 experimental image frames were used. 

The high gain in image analysis speed comes from a combination of three factors: GPU-
based parallel localization, appropriate convolution template and optimized number of 
iterations. First of all, we realized that integrating a fitting-based method into an image 
analysis method would be essential if high localization precision is desired. The only problem 
is how to minimize the negative effects from the slow fitting process. GPU-based parallel 
localization is an ideal solution, since the GPU is capable of processing multiple molecules 
simultaneously, which is desired by localization-based super resolution microscopy. 
Simulation results show that it is easy to analyze an image frame with up to 100 molecules 
(Figs. 3a-3b) without noticeably increasing either localization or total computation time. 
Moreover, the appropriate form of the convolution template is also helpful for maximizing the 
speed of GPU-based localization (Section 2.2). Third, although localization precision 
generally increases with a larger number of iterations in the fitting-based method (maximum 
likelihood in our case), it is found that ten iteration steps are sufficient for achieving 
satisfactory localization precision, while >10 iterations can only slightly improve the precision 
(Fig. 4). Therefore, the number of iterations was set to ten for all of the following image 
analysis. 

The speed gain in analyzing experimental data is verified by simulation data (Figs. 3c-3d 
and Table 2). We found that more than 30 simulated image frames (512 x 512 pixels) with 
100 molecules in each frame could be analyzed within 0.11 second, corresponding to an 
imaging analysis capacity of ~20,000 molecules per second. The gain in the total computation 
time of the MaLiang method is 11 over the FB and 22 over the GF methods. The speed is fast 
enough for real-time processing experimental images from typical fast EMCCD cameras, 
while neither localization precision nor field of view is compromised. 

 

Fig. 3. Time consumption in localization (a) and full routine (b) for the three methods using 
simulated data. Simulated images (512 x 512 pixels) with different number of molecules (10-
100) were used. Each data point was calculated from 30 simulated images. Speed gains for the 
localization (c) and full routine (d) are also provided. 
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Fig. 4. Optimization of the number of iterations with simulation (a-b) and experimental data (c-
d). (a) Iteration error is shown for simulation data with different signal-noise-ratio (SNR) 
levels. The iteration error was computed as the difference between the molecule positions 
provided in the (k)-th and (k-1)-th iteration step. (b) Comparison of localization precisions by 
using different iteration times (N). (c) Overlay of the first 900 experimental image frames used 
to optimize the number of iterations. (d) The relations between iteration number (N) and the 
distributions of fluorescent molecules around their mean contour line. 

3.3. Capacity for tracking dynamic processes 

We checked the capability of our high-precision, high-speed image analysis method for 
discovering fast cellular process in living cell imaging. Sample drift in the PALM instrument 
was corrected according to Betzig et al. [21], using the bead marked with magenta circle in 
Fig. 5. The drift-based contribution to position errors in PALM data is significantly reduced 
after sample drift correction (Fig. 6). The standard deviation of the bead positions obtained 
from 8,000 imaging frames is 7.5 nm, so that under the present imaging conditions, 
intracellular structure motions larger than 20 nm should be resolvable [22]. The motion of the 
partial F-actin filament in Fig. 5b is found to be < 20 nm (Fig. 5d), indicating that this 
structure is almost stationary during the long image acquisition process. However, another F-
actin filament (Fig. 5e) was found to display > 50 nm motion (Fig. 5g), as detected between 
data sets 5 and 7. To quantify the sensitivity toward motion detection between the fast image 
analysis methods (MaLiang and FB), we calculated the Z-statistics from the positions of 
molecules for the two successive data sets in Fig. 5f. It is found that the MaLiang method has 
better performance in discovering such motions than the FB method (Fig. 7), which is 
advantageous for dynamic processes in live cell imaging. 
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Fig. 5. Capability of detecting intracellular motions with the MaLiang method. The full image 
in (a) was overlaid from four PALM images reconstructed from data sets 1, 3, 5 and 7. The 
green region in (a) was enlarged to (b), and the latter was cleaned up (c) and further analyzed 
(d). Individual PALM images for data set 1 (blue), 3 (green), 5 (red) and 7 (black) are shown in 
(c), where data points heavily deviating from the mean contour lines were eliminated (see 
Section 2.5 for details). The projection of all molecules in (c) to an orthogonal direction of the 
mean contour line from data set 1 is shown in (d). Similarly, (e)-(f) are for the yellow region in 
(a). The bead marked with a magenta circle in (a) was used to correct sample drift. The scale 
bar is 3 µm for (a) and 500 nm for (b) and (e). 

 

Fig. 6. Sample drift correction. (a) Sample drift was determined by tracking a luminescent bead 
during the entire PALM image acquisition process. The smooth drifts were used in the sample 
drift correction, so that the influence from localization error to the localization precision of the 
PALM data could be minimized. Localization of the bead before (b) and after (c) drift 
correction indicates that the drift-based contribution to position errors in PALM data is 
significantly reduced. The standard deviation of the bead position in (c) is 7.5 nm. 
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Fig. 7. Comparison of the motion detection sensitivity between the MaLiang (MLG) and 
fluoroBancroft (FB) methods. The motion detection sensitivity is characterized by Z-statistics 
(y-axis), where bigger value represents larger difference between two data sets. Movement 
between data set 1 and 3 is represented as motion 1, while motion 2 and 3 corresponding to 
movements from data set 3 to 5, and 5 to 7, respectively. 

4. Summary 

Our MaLiang method, based on the maximum likelihood algorithm and GPU computation, is 
capable of ultra-fast localization-based super resolution image analysis with high localization 
precision. Compared with the fast fluoroBancroft method reported recently, our method is 
about eight times faster in the full routine for analyzing experimental image frames without 
compromising either localization precision or field of view. The MaLiang method has been 
shown to have excellent performance in discovering motions in live cell imaging. 
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