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Abstract: Localization-based super-resolution microscopy (or called 
localization microscopy) rely on repeated imaging and localization of active 
molecules, and the spatial resolution enhancement of localization 
microscopy is built upon the sacrifice of its temporal resolution. Developing 
algorithms for high-density localization of active molecules is a promising 
approach to increase the speed of localization microscopy. Here we present 
a new algorithm called SSM_BIC for such purpose. The SSM_BIC 
combines the advantages of the Structured Sparse Model (SSM) and the 
Bayesian Information Criterion (BIC). Through simulation and 
experimental studies, we evaluate systematically the performance between 
the SSM_BIC and the conventional Sparse algorithm in high-density 
localization of active molecules. We show that the SSM_BIC is superior in 
processing single molecule images with weak signal embedded in strong 
background. 

©2011 Optical Society of America 

OCIS codes: (180.2520) Fluorescence microscopy; (100.6640) Superresolution; (110.2960) 
Image analysis. 
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1. Introduction 

Recently, a series of breakthroughs in far-field optical microscopy have been made, which 
dramatically improve the spatial resolution of conventional fluorescence microscopy by over 
an order of magnitude in both lateral and axial directions [1,2]. Among them, a wide-field 
approach called localization microscopy, including photo-activation localization microscopy 
(PALM) [3], fluorescence photoactivation localization microscopy (fPALM) [4] and 
stochastic optical reconstruction microscopy (STORM) [5], holds superior capability in live 
cell imaging. 

The operating principle of localization microscopy is based on repeated cycles of imaging 
and localization of active molecules. Within one cycle, a small fraction of densely distributed 
molecules are activated and make capable of fluorescence (that is, become active molecules), 
followed by conventional single molecule imaging steps including excitation, emission and 
bleaching, finalized with molecule localization procedures which are used to find the 
localizations of active molecules in single molecule image frames. A final super-resolution 
fluorescence image could be obtained through repeating this cycle with typically many 
thousands of times, which depends mainly on the total number of active molecules necessary 
to be found within a diffraction limited area (or called Airy disk) for a desired spatial 
resolution [6]. 

It is well-known that the high spatial resolution of localization microscopy is built upon 
the sacrifice of its temporal resolution. Therefore, ever since its birth there is a strong need to 
improve the imaging speed of localization microscopy, while maintaining a desired spatial 
resolution. Recently, with a tight control on the spectroscopic characteristics of bright 
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fluorescence probes and the use of fast low light detector, Zhuang et al [7] achieved 2D super-
resolution imaging at spatial resolution of ~25 nm and temporal resolution as fast as 0.5 s in 
living cells. This achievement almost reaches the upper speed limit of localization 
microscopy, which was estimated to be on the order of sub-second [8]. Note that this 
estimation was based on imaging and localization of sparse distributed active molecules, that 
is, one or zero molecule within an Airy disk. 

If it is possible to localize more than one active molecules inside an Airy disk in each 
image frame, the total number of repeated imaging cycles could thus be significantly reduced 
to obtain the same number of localized molecules inside that Airy disk, which is surely 
effective for enhancing the imaging speed without sacrificing the spatial resolution. In fact, a 
number of algorithms for high-density localization of active molecules have been developed 
in the past several years for such purpose. For example, based on multiple Gaussian kernel 
fitting and residual image analysis, Holden et al designed an algorithm that extremely boosts 
the density of localized active molecules [9]. While at the same time, Huang et al applied 
multiple-emitter fitting and graphics processing unit (GPU) computation for fast and high 
precision localization of active molecules with high density [10]. However, these algorithms 
were developed for single molecule images with very weak fluorescence background, which 
was calculated to have signal-background-ratio (SBR) of 3-10 and is not easily obtained from 
localization microscopy experiments (especially for those without TIRF illumination). Note 
that the SBR is defined as the ratio of the peak value of signal and the intensity of 
background. 

Here we present an algorithm for processing single molecule images with weak signal 
embedded in strong background (SBR < 1), which are typical from localization microscopy 
experiments. This algorithm, called SSM_BIC for the combination use of the Structured 
Sparse Model [11] and the Bayesian Information Criterion [12], exploits the fact that the 
number of active molecules in an image with low SBR could be reasonably estimated with 
high robustness by the Structured Sparse Model (SSM), which has become a major research 
field in signal processing for sparse image representation, and that a high probability for 
obtaining an optimal model for describing a low SBR image can be achieved with the 
Bayesian Information Criterion (BIC), a well-known criterion for model selection with the 
power of balancing training error and model complexity. 

2 Simulation and experimental methods 

2.1 The imaging model of multiple active molecules 

Based on optical imaging theory, point spread function (PSF) can well describe the imaging 
model of individual molecules at the focal plane of an optical system [13]. Assuming that 
multiple active molecules lie in the focal plane, the imaging model of these molecules is the 
convolution of PSF and the function with respect to the positions of the molecules, which can 
be represented as 

 
1 2

( , , , )
n

L o o o PSF F⊗ =⋯   (1) 

Here, L(O1,O2,..., On) denotes the function that returns the fixed values in the positions 
(O1,O2,..., On) of n active molecules and zeros otherwise. Considered that PSF can be 
approached by two dimensional Gaussian function, the theoretical signal (Fi,j) of pixel (i,j) in 
detector plane can be written as [14] 
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where Olx and Oly represent the x- and y- coordinates of the molecule in position O, Al is the 
amplitude, and ω is the width of Gaussian kernel. Taking the influence of noise (including 
mainly shot noise and background noise) into account, the finally observed signal (Si,j) in 
pixel (i,j) is [15] 
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where Nb is the intensity of background noise and Pois(x) is a Poisson random number with 
mean value of x. The task of high-density localization of active molecules is thus to find the 
positions of multiple active molecules (O1,O2,..., On) from the observed signal Si,j (i,j = 
1,2,…,m). 

2.2 Pre-estimation of the positions of active molecules using SSM 

Pre-estimation of the positions of active molecules in an extracted sub-region (m × m pixels) 
is a key step in SSM_BIC. Assuming that if an active molecule lies in pixel (i,j), the 
corresponding observed signal Si,j should be larger than a threshold value, and that the 
distribution of active molecules is still sparse in sub-pixel scale. Then an SSM [11] can be 
obtained 
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Here, ei,j is an indicator function whose value is 1 if there is one molecule in pixel (i,j) and 0 if 
there is no molecule. Lij is determined by the observed signal Si,j with the following 
procedures. Si,j is firstly subtracted by the associated background (the average intensity in the 
edge of the extracted sub-region), then normalized by dividing by its maximum value (after 
background subtraction) to give Li,j. If Li,j is larger than a given threshold value, it keeps 
unchanged and zeros otherwise. In optimization problem (4), the inequality constraints 
describe the sparse distribution characteristic of active molecules. Specifically, the first 
inequality constraint indicates that the total number of active molecules does not exceed n, 
while the following inequality constraints show that there is only one active molecule at most 
in a pixel and its neighborhood. Furthermore, the inequality constraints in optimization 
problem (4) guarantee that, in most cases, the optimal solver e* could be obtained using 
common optimization algorithm [16,17]. For some extreme cases, an auxiliary branch and 
bound procedure should be also used. According to the definition of ei,j, pre-estimated 
positions of active molecules are given by the optimal solver e*. 

Note that the threshold value and the maximum number of particles n can effectively 
control the sparsity of pre-estimated molecules in a sub-region, and thus a reasonable pre-
estimation of the positions of active molecules is beneficial for the procedures in the 
following sections. Considering the size of Airy disk, the density of molecules, and pixel size, 
the threshold value and n were set to be 0.4 and 6, respectively, unless otherwise specified. 

2.3 The selection of optimal model using BIC 

Since the pre-estimation in Section 2.2 is rough, the pre-estimated positions of active 
molecules usually contain some false-positive positions and may have pixel-level errors 
compared to the corresponding real positions. To eliminate the false-positive positions and 
improve localization precision, BIC is introduced for the selection of an optimal model that 
describes the observed signal Si,j (i,j = 1,2,…,m). A detailed description is presented as 
follows. 

If the number of pre-estimated positions is assumed to be s, we can obtain these sub-pixel 
positions using the maximum likelihood estimation [18] 
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Here the Airy disk is fixed, i.e., the width of Gaussian kernel ω in Eq. (2) is unchanged. The 
symbols in Eq. (5) have the same meanings as those in Eqs. (2) and (3). Equation (5) can be 
solved using the optimization algorithm reported in [16,17]. The amplitude and the posizition 
of each molecule and the intensity of background noise were ascertained and then substituted 
into the function Fi,j + Nb. Then, we can approximately calculate the corresponding BIC 
statistics [12] 

 
2 2
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In a total number of s molecules, the molecule with minimum fitting amplitude Ai is 
removed and a new model describing the remaining s-1 molecules is generated. This new 
model is used to fit the observed signal Si,j (i,j = 1,2,…,m), and the statistics BIC(s-1) is 
calculated again. In this way, a series of statistics BIC(s-2),…, BIC(1) can be obtained by 
repeating the above procedures. The model with minimum value of BIC(s*) is defined to be 
the optimal model. 

Using the optimal model, the observed signal Si,j is fitted to give positions of the active 
molecules, which are regarded as their real positions. Because the value of amplitude Ai is 
typically one or two orders of magnitude larger than the position parameters of active 
molecules in a sub-region, it is difficult to search for the optimal solver through iteration 
method. Therefore in the fitting the position parameters of active molecules were enlarged ten 
times and then recovered afterwards. 

2.4 The extraction of sub-region 

This step includes de-noising and sub-region extraction. For de-noising, an original image is 
convoluted three times with an averaging template containing 3 × 3 pixels, and then 
convoluted with an annular averaging template (5 × 5 pixels) in which the values in inner part 

(3 × 3 pixels) are set to be zero and the values in marginal part to be −1/16, respectively. Here 
the triple application of the 3x3 averaging template is used to effectively collect the signal 
energy of active molecules which are distributed within a distance of 1-2 Airy disk radius, and 
the annular averaging process is used to reduce the influence of background intensity 
difference in the entire sub-region extraction process [19,20]. In the de-noised image, pixels 
with local maximum values are detected by threshold method, where the threshold value is set 
to be more than 5 times the standard deviation of background. Taking the coordinates of the 
detected pixels as the centers, sub-regions with a size of 9 × 9 pixels are extracted. Note that 
the sizes of the convolution template and the sub-region are selected according to the fact that 
Airy disk typically occupies 5 × 5 pixels for a balance on localization precision and signal 
intensity [21]. 

After the sub-region extraction, active molecules are localized simultaneously through the 
procedures described in Sections 2.2 and 2.3. However, the size of sub-region may be too 
large for one active molecule and may be too small for multiple active molecules. Therefore, 
the positions of the active molecules in each image, which were estimated by Eqs. (5) and (6), 
are automatically divided into multiple groups by a cluster procedure basing on a mean-shift 
algorithm [22], In the process of clustering, the kernel width should be set to ensure that any 
molecule pairs within a distance of less than 4 × Airy disk radius can be attributed to the same 
group. Then another round of sub-region subtraction is performed to guarantee that the Airy 
disk of each group of active molecules can be covered completely. Finally, the positions of 
active molecules can be ascertained using the procedures described in Section 2.3. 
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The complete procedures for the SSM_BIC algorithm are summarized as follows. 

Step 1. De-noising and sub-region extraction. 

Step 2. Pre-estimation of the positions of active molecules using SSM. 

Step 3. Select the optimal model by BIC and search for the positions of active molecules. 

Step 4. Cluster the positions of active molecules with mean-shift algorithm for another 
round of sub-region extraction. 

Step 5. Repeat Step 3 with the refined sub-regions found in Step 4. 

2.5 Localization microscopy imaging 

2.5.1 Cell culture and plasmid transfection 

HEK293T cells were cultured on 25-mm-diameter No. 1.5 cover-glass-bottom dishes 
(Electron Microscopy Sciences, Cat. # 72225-01) at 37 °C with 5% CO2 and grown in 
Dulbecco’s modified Eagle’s medium (DMEM, Invitrogen). Transfection of the eukaryotic 
expression vector for actin bundles labeling, pcDNA3-lifeact-d2EosFP, was carried out using 
Lipofectamine LTX (Invitrogen) according to the manufacturer’s instructions. Cells were 
maintained for 24 h after transfection in culture medium and then cleaned and fixed for further 
single molecule imaging. 

2.5.2 Single molecule imaging 

Single molecule imaging experiments were performed with a home-built TIRF microscope 
setup consisting of an Olympus IX 71 inverted microscope, a 100x/NA1.49 oil immersion 
TIRF objective (UAPON 100XOTIRF, Olympus), a 405 nm laser diode and a 561 nm diode-
pumped solid-state laser (both from CNILaser, China), and an Andor iXon 897 EMCCD 
camera. A dichroic mirror (Di01-R488/561, Semrock) and a longpass filter (BLP01-561R-25, 
Semrock) were used to separate the collected fluorescence from scattering laser and impurity 
fluorescence. Data were acquired by the software provided by the camera manufacturer. 
Signal in single molecule images were converted from gray level into photons with the 
camera conversion factor provided by the camera manufacture. Sample drift was not 
corrected. The pixel size at sample plane is 160 nm and an Airy disk covers 3 × 3 pixels. 

3. Results 

Simulation and experimental data sets were used to evaluate the performance of SSM_BIC in 
high-density localization. For all simulations, the Airy disk radius is 250 nm, the pixel size at 
sample plane is 100 nm and the background intensity is 100 photons per pixel, and we assume 
that all emitted fluorescence photons from individual molecules can be detected completely 
by detector. The performance of SSM_BIC was measured by false-positive rate, detection rate 
and localization precision. The false-positive rate is defined as the ratio of false-positive 
positions to suspected positions found by the localization algorithm. The detection rate is 
defined as the ratio of real positive positions from suspected positions to true positions of the 
simulated molecules. The localization precision (σ) represents the average of the absolute 
error between true positions and real positive positions. Suspected position is recognized as 
real positive position providing that the distance between the suspected and true positions is 
less than 50 nm, and false-positive positions otherwise. Comparison on the localization 
performance between SSM_BIC and Sparse Algorithm (SA) was also performed. Note that 
SA is based on the assumption that only one active molecule lies inside an Airy disk 
[19,20,23], and the SA used in this paper was described previously in detail [19]. 

3.1 Analysis of simulated images 

To evaluate the applicability of SSM_BIC algorithm in high-density localization, 10 
simulated image frames (100 × 100 pixels) with 20-180 molecules in each frame were 
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generated according to the description in Section 2.1. The molecules were immobilized and 
placed across the image uniformly and randomly. Key steps of SSM_BIC are shown in Fig. 
1a. Specifically, SSM is used to calculate the pre-estimated positions (denoted by ‘ × ’) from 
the observed signal (real positions, denoted by ‘o’) of three representative active molecules. 
With the pre-estimated positions, four models are produced and the optimal model is 
determined by selecting the minimum of BICs (marked in red in Fig. 1a). The fitting positions 
in the optimal model are seen to be fairly close to the real positions. 

The simulated images in Fig. 1b show the overall effects of the number of active 
molecules, signal, and background to image quality. Overlaps of Airy disks hardly occur in 
the simulated images with 20 active molecules and are obvious for those with 100 or more 
active molecules. Quantitative image analysis (Fig. 1c) shows that, for a false-positive rate 
better than 10% and a detection rate higher than 85%, SA can only process images with 20-40 
active molecules, while SSM_BIC can process those with much higher molecule density (100-
180 active molecules). Clearly, SSM_BIC shows 3-6 folds improvement on the localization 
density of active molecules than SA and without loss of localization precision. 

3.2 Resolving active molecule pairs 

To further evaluate the performance of SSM_BIC in high-density localization, the efficiency 
of SSM_BIC in resolving molecule pairs with various distances was also quantified. A total 
number of 100 simulated images (9 × 9 pixels) with one molecule pair inside were generated 
for each computation. 

Sample images are shown in Fig. 2a, where each molecule in the pair emits 350 photons. 
For this kind of images where weak signals are embedded in strong background, it was found 
that SSM_BIC can resolve molecule pair with a distance of 250 nm, evidencing by a false-
positive rate of 8% and a detection rate of 93% (shown by the red line in Fig. 2b). If the 
signals increase to 500 photons for each molecule, molecule pair with a distance of 200 nm 
are still resolvable by SSM_BIC with a false-positive rate of 7% and a detection rate of 94% 
(shown by the black line in Fig. 2b). In contrast, SA is only suitable for the cases where the 
distance is larger than 350 nm and the signal is much stronger (700 photons), as shown by the 
dashed black line in Fig. 2b. These results verify the applicability of SSM_BIC in resolving 
molecule pairs with weak signals and short separate distance (200-250 nm). 
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Fig. 1. Localizing simulated images with SSM_BIC and SA. (a) A brief description of the 
SSM_BIC. Circles and crosses represent the real and pre-estimated positions of active 
molecules, respectively. (b) Simulated images (100 × 100 pixels) containing active molecules 
with different densities shown in the left corner of the corresponding images. (c) The 
performance of SSM_BIC and SA in analyzing images with different number of active 
molecules. 

 

Fig. 2. Capability of SSM_BIC in resolving molecule pairs. (a) Sample images for molecule 
pairs with different distances, where each molecule emits 350 photons. (b) The performance of 
SSM_BIC and SA in resolving molecule pairs with different signal intensities and separate 
distances. Note that the background is 100 photons per pixel for all simulations. 
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3.3 Analysis of experimental data 

The applicability of SSM_BIC in processing experimental data was evaluated by analyzing 
single molecule images of actin bundles in fixed HEK293T cells. A stack of 600 experimental 
image frames was overlaid to build a TIRF image, where some structures are seen to be 
labeled densely (as shown by the green arrows in Fig. 3a). Two image processing algorithms, 
SSM_BIC and SA, were used to process the TIRF image and reconstruct final super-
resolution images (Figs. 3b and 3c). It was found that the number of detected molecules by 
SSM_BIC (~62000) is 2.4 times that by SA (~25000), showing the advantage of SSM_BIC in 
detecting more active molecules in a fixed number of images. This result indicates that 
SSM_BIC can be used to reduce the number of image frames for a given spatial resolution, 
which is surely beneficial for enhancing the image speed of localization microscopy. 

Interestingly, some missing structures marked by the green arrows in Fig. 3b are clearly 
visualized in Fig. 3c, evidencing the power of SSM_BIC in high-density localization. For 
better understanding on the quality of the experimental single molecule images, Fig. 3b was 
further analyzed to give histograms in Figs. 3d and 3e. Note that only those molecules with 
fitting width of Gaussian kernel of less than 140 nm (corresponding to Airy disk radius of 350 
nm) were included in the statistics, and that the peak value of signal is equal to ~44% of the 
total number of detected photons from single molecule when the Airy disk is covered by 3 × 3 
pixels. Thus the average peak value of signal was calculated to be 380 and the average SBR 
was estimated to be 0.72, showing the weak signal characteristics of the experimental images. 

 

Fig. 3. TIRF image from a stack of 600 image frames (a) and super-resolution images 
reconstructed by SA (b) and SSM_BIC (c). The green arrows show some densely labeled 
structures. The data in (b) was further analyzed to give the histograms of background (d) and 
the total number of detected photons from single molecules (e). The mean values of individual 
histograms are shown in the right corner of the corresponding figures. Scale bar: 2 µm. 

4 Discussions 

4.1 The capability of detecting weak signals with SSM_BIC 

Pre-estimation of the positions of active molecules and selection of an optimal model are two 
key components in SSM_BIC. The use of SSM ensures a reasonable estimation to the real 
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number and positions of active molecules (Fig. 1a). Further investigation shows that, if a 
given threshold is used in the selection of optimal model (see Section 2.2), the detection rate 
in SSM_BIC is insensitive to the signal intensity, while for Gaussian deflation [9,24] this rate 
depends strongly on the signal level (Fig. 4a). In fact, it was reported that the threshold in 
Gaussian deflation should be modified according to signal intensity to ensure detection 
efficiency [9]. Furthermore, it was found that changes on the threshold plays negligible 
influence on the detection rate in SSM_BIC (Fig. 4b). 

It is well-known that BIC is a powerful tool for the selection of optimal model, since it 
keeps a balance on training error and model complexity. Although BIC originates from the 
identification of optimal linear model, it is still effective for optimal nonlinear model [12], 
which is also supported by our simulation results shown in Fig. 4c. For simulated images with 
real molecule number of 2, if the pre-estimated molecule number is set to be 4, the 
identification accuracy using the criterion of minimal training error increases slowly with the 
signal intensity and approaches the real value at signal levels higher than 2000 photons, while 
for BIC a satisfactory identification accuracy could be obtained at signal levels as low as 350 
photons (Fig. 4c). 

 

Fig. 4. Dependence of detection rate on threshold and optimal model selection in SSM_BIC. (a, 
upper) Simulated images containing active molecule pairs with a distance of 250 nm and 
different signal levels. (a, lower) Detection efficiency of SSM_BIC and Gaussian deflation 
(GD) using a given threshold of 0.4. (b) Influence of threshold on detection rate in SSM_BIC. 
(c) Comparison on optimal model selection between BIC and minimal training error. 

4.2 Identification of the molecule pairs with strong signal 

In the previous simulations with weak signals, the maximum molecule density is limited to 
1.8 molecules/µm

2
. Processing images with higher molecule density is possible with 

SSM_BIC algorithm, although in this case it is necessary to increase signal intensity and make 
some modifications to the optical system. For example, for a molecule pair with 2000 detected 
photons from each molecule, the resolved distance reaches 125 nm for a pixel size of 50 nm 
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(the blue lines in Fig. 5), which is much better than those with 500 detected photons and 100 
nm pixel size (the black lines in Fig. 2b). 

 

Fig. 5. Performance of SSM_BIC in the identification of molecule pairs with strong signal. 
Note that the background is 100 photons per pixel for all simulations. 

4.3 Identification of the molecule pair with non-equal emission 

The capability of SSM_BIC in identifying the molecule pairs with different detected photons 
was also investigated. In experimental single molecule images, the detected photons from 
individual molecule in a molecule pair may be different and the ratio could be as big as 2 
[25,26]. Simulation results show that the localization performance of SSM_BIC is insensitive 
to the ratio changes (Fig. 6). This is from the fact that BIC is suitable of identifying multi-
model composed with different weights. However, variance analysis [27] can only resolve the 
molecule pair with equal emission. 

 

Fig. 6. The performance of SSM_BIC in the identification of the molecule pair with non-equal 
emission. Note that the background is 100 photons per pixel for all simulations. 

4.4 Computation load of SSM_BIC 

It was found that SSM_BIC can only process ~2 positions per second when the code is run in 
Matlab using an Intel i5-750, 2.68 GHz personal computer with 4.0 GB memory. The reasons 
for this slow speed are from the selection of optimal model and the solving of optimization 
problem (5) the iteration number of which is as big as 50. A combination of GPU and 
SSM_BIC can be expected to boost the computation speed with up to several hundred folds 
[19,28,29]. 

5. Conclusion 

Through both simulation and experimental studies, we demonstrated the applicability of the 
new SSM_BIC algorithm for high-density localization of active molecules. We found that 
SSM_BIC has 3-6 folds improvement on the localization density than SA, and that SSM_BIC 
is capable of resolving the molecule pairs with weak signal (i.e. a total number of 350-500 
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signal photons from single molecules embedded in a background intensity of 100 photons per 
pixel) and short separate distance (200-250 nm). We also verified the superior performance of 
SSM_BIC over SA in processing experimental single molecule images with densely labeled 
structures. We further discussed the reason on why SSM_BIC could detect weak signal, 
proved that SSM_BIC can identify the molecule pairs with strong signal or non-equal 
emission. Although currently our SSM_BIC algorithm runs much slower than SA, we expect 
significant speed enhancement with future combination use of GPU computation with 
SSM_BIC, which would surely extend the potentials of SSM_BIC in the field of super-
resolution microscopy. 
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